Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(3): e0082723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345380

RESUMO

Vibrio cholerae has caused seven cholera pandemics in the past two centuries. The seventh and ongoing pandemic has been particularly severe on the African continent. Here, we report long read-based genome sequences of six V. cholerae strains isolated in the Democratic Republic of the Congo between 2009 and 2012.

2.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134007

RESUMO

Vibrio cholerae is a pathogen that causes disease in millions of people every year by colonizing the small intestine and then secreting the potent cholera toxin. How the pathogen overcomes the colonization barrier created by the host's natural microbiota is, however, still not well understood. In this context, the type VI secretion system (T6SS) has gained considerable attention given its ability to mediate interbacterial killing. Interestingly, and in contrast to non-pandemic or environmental V. cholerae isolates, strains that are causing the ongoing cholera pandemic (7PET clade) are considered T6SS-silent under laboratory conditions. Since this idea was recently challenged, we performed a comparative in vitro study on T6SS activity using diverse strains or regulatory mutants. We show that modest T6SS activity is detectable in most of the tested strains under interbacterial competition conditions. The system's activity was also observed through immunodetection of the T6SS tube protein Hcp in culture supernatants, a phenotype that can be masked by the strains' haemagglutinin/protease. We further investigated the low T6SS activity within the bacterial populations by imaging 7PET V. cholerae at the single-cell level. The micrographs showed the production of the machinery in only a small fraction of cells within the population. This sporadic T6SS production was higher at 30 °C than at 37 °C and occurred independently of the known regulators TfoX and TfoY but was dependent on the VxrAB two-component system. Overall, our work provides new insight into the heterogeneity of T6SS production in populations of 7PET V. cholerae strains in vitro and provides a possible explanation of the system's low activity in bulk measurements.


Assuntos
Cólera , Sistemas de Secreção Tipo VI , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Toxina da Cólera/metabolismo
3.
ISME J ; 16(7): 1868-1872, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411099

RESUMO

Vibrio cholerae is a well-studied human pathogen that is also a common inhabitant of marine habitats. In both environments, the bacterium is subject to interbacterial competition. A molecular nanomachine that is often involved in such competitive behavior is the type VI secretion system (T6SS). Interestingly and in contrast to non-pandemic or environmental isolates, the T6SS of the O1 El Tor clade of V. cholerae, which is responsible for the ongoing 7th cholera pandemic, is largely silent under standard laboratory culture conditions. Instead, these strains induce their full T6SS capacity only under specific conditions such as growth on chitinous surfaces (signaled through TfoX and QstR) or when the cells encounter low intracellular c-di-GMP levels (TfoY-driven). In this study, we identified a single nucleotide polymorphism (SNP) within an intergenic region of the major T6SS gene cluster of V. cholerae that determines the T6SS status of the cell. We show that SNP conversion is sufficient to induce T6SS production in numerous pandemic strains, while the converse approach renders non-pandemic/environmental V. cholerae strains T6SS-silent. We further demonstrate that SNP-dependent T6SS production occurs independently of the known T6SS regulators TfoX, QstR, and TfoY. Finally, we identify a putative promoter region adjacent to the identified SNP that is required for all forms of T6SS regulation in V. cholerae.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/genética
4.
Environ Microbiol ; 22(10): 4485-4504, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885535

RESUMO

Vibrio cholerae isolates responsible for cholera pandemics represent only a small portion of the diverse strains belonging to this species. Indeed, most V. cholerae are encountered in aquatic environments. To better understand the emergence of pandemic lineages, it is crucial to discern what differentiates pandemic strains from their environmental relatives. Here, we studied the interaction of environmental V. cholerae with eukaryotic predators or competing bacteria and tested the contributions of the haemolysin and the type VI secretion system (T6SS) to those interactions. Both of these molecular weapons are constitutively active in environmental isolates but subject to tight regulation in the pandemic clade. We showed that several environmental isolates resist amoebal grazing and that this anti-grazing defense relies on the strains' T6SS and its actincross-linking domain (ACD)-containing tip protein. Strains lacking the ACD were unable to defend themselves against grazing amoebae but maintained high levels of T6SS-dependent interbacterial killing. We explored the latter phenotype through whole-genome sequencing of 14 isolates, which unveiled a wide array of novel T6SS effector and (orphan) immunity proteins. By combining these in silico predictions with experimental validations, we showed that highly similar but non-identical immunity proteins were insufficient to provide cross-immunity among those wild strains.


Assuntos
Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/classificação , Vibrio cholerae/genética , Amoeba/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/epidemiologia , Cólera/microbiologia , Genoma Bacteriano/genética , Proteínas Hemolisinas/genética , Humanos , Pandemias , Vibrio cholerae/isolamento & purificação
5.
Artigo em Inglês | MEDLINE | ID: mdl-30574591

RESUMO

The bacterium Vibrio cholerae exhibits two distinct lifestyles, one as an aquatic bacterium and the other as the etiological agent of the pandemic human disease cholera. Here, we report closed genome sequences of two seventh pandemic V. cholerae O1 El Tor strains, A1552 and N16961, and the environmental strain Sa5Y.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA